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Ising Model

Given undirected G = (V, E) and Bernoulli variables

X =(Xi,...,Xp) € {—1,41}P on V, the Ising model is the
family of distributions

Py (X1,..., EXP{ZGSXS-F Z OstXs Xt — )}

seV (s,t)eE

where 6 is connection strength and A (#) a normalization
constant. In practice, A (6) becomes computationally taxing
when p is big.
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Reformulation of Multivariate Gaussian Variables
Let X be a variable with distribution

1 1

Pux(x) = —1e—§(X—M)T2*‘ (X=p)

(27)2 det (X)2

With vy = =X~ ', @ = ', we obtain an “Ising” form

(

;P
Py e (x) =exp Z YsXs — 5 Z Ostxsxt — A(O)
s=1

s, t=1

diagonal off-diagonal

where A(©) = —1 log det [g} .
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Figure 9.3 (a) An undirected graph G on five vertices. (b) Associated sparsity pat-
tern of the precision matriz ©. White squares correspond to zero entries.
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Zero pattern of 6
12 3 4 s
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Figure 9.3 (a) An undirected graph G on five vertices. (b) Associated sparsity pat-
tern of the precision matriz ©. White squares correspond to zero entries.

» The entire graph represents the joint distribution.
» Dependence structure is represented by edges, e.g.

X1 uE X4 | X2>X3>X5>

also known as conditional independence.
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Conditional Dependence Structure

Given p-dimensional X ~ N (u, X). Consider Y = X, and
Z= (X1,. .. ,Xp_1). Thus

z 277 ozy
ny Ozy OYY

and the conditional distribution

T — —
Y|Z:ZNN /Ly—l—(Z—,th) Zz}UZY ,O‘yy—O’;yzZ}UZY
—

regression coef.

Write By,z = £30zy. If By|z =0, then Y and Z; are
conditionally independent given the rest.
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Symmetry of Grpahical Models

One can do this for arbitrary Y and thus form a matrix g such
that each entry captures the conditional dependence of variable
Xi and X;.

Symmetry
Consider ® = £~ '. Then,

o GTZZ Ozy
Ozy Oyy
where in particular,

Ozv = —OvyE 707y = —OyyPy|z

which means ©® symmetrically and completely determines
conditional dependence structure. Regression analysis doesn'’t
honor this symmetry (normal equation solutions).
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Conditional Inference

Consider Gaussian variables X = (X, ..., Xp) embedded in
G=(V,E).

Figure 9.6 The dark blue vertices form the neighborhood set N(s) of vertez s (drawn
in red); the set N'*(s) is given by the union A(s) U {s}. Note that N'(s) is a cut
set in the graph that separates {s} from V\N* (s). Consequently, the variable X, is
conditionally independent of Xy x+(,) given the variables X () in the neighborhood
set. This conditional independence implies that the optimal predictor of X, based on
all other variables in the graph depends only on Xy -




Conditional Inference

Consider Gaussian variables X = (X, ..., Xp) embedded in
G = (V,E). For s € V, define its complement and
neighborhood

Xi(s} = { X, t € V\{s}} e RP"!
N(s)={teV|(st)cE}

set in the graph that separates {s} from V\N* (s). Consequently, the variable X, is

iomally independent of Xy -+ () given the variables Xx (o) in the neighborhood
is conditional independence implies that the optimal predictor of X, based on
all other variables in the graph depends only on Xy -




Conditional Inference

Distributional Equivalence

(Xs \ X\{s}> il <Xs \ XN’(s))

If one wants to predict X;s given the rest, you only need to look
“around” X, i.e. the best predictor is a function of Xj/(s).

Xs = X\T{s}ﬁs + W\{s}

To estimate © with © is to approximate the true edge set E with
an estimate E.



Parallel Graphical Lasso

Key steps

1. Foreachvertexs=1,2,...,p, do PARALLEL!
1.1 Some type of regression, say, /asso,

N
« ) 1 T 2
B% € argmin {ZN; (Xi,s—X,;v\{s}Bs) +)‘||53|1}

/BSERP_1

1.2 Compute the estimate A/ (s) = supp (Bs) i.e. nodes where
/3% is nonzero.
2. Combine the estimates A/ (s) for every s € V.



Theoretical Guarantee

For graphical lasso to ensure G = G with high probability,

2
< d?logp
2™ N

Hé—e*

where d is maximum degree of any node. We see that if
N =Q (d?log N), we have recovery of the covariance structure
and thus a graphical model. The proof relies on concentration.



Take-aways

Advantanges

> Parallelizable
» Fast without the use of extensive packages

Disadvantanges

» No confidence interval of parameter estimation
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