
Graphical Model Selection

Binan Gu

Department of Mathematical Sciences, New Jersey Institute of Technology

New Jersey Institute of Technology
Fall 2020 Machine Learning Talk III



Motivation: Data Representation

Ising Model

Given undirected G = (V ,E) and Bernoulli variables
X =

(
X1, . . . ,Xp

)
∈ {−1,+1}p on V , the Ising model is the

family of distributions

Pθ
(
x1, . . . , xp

)
= exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt − A (θ)


where θ is connection strength and A (θ) a normalization

constant. In practice, A (θ) becomes computationally taxing
when p is big.
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Motivation: Data Representation

Reformulation of Multivariate Gaussian Variables

Let X be a variable with distribution

Pµ,Σ (x) =
1

(2π)
s
2 det (Σ)

1
2

e−
1
2 (x−µ)

TΣ−1(x−µ).

With γ = −Σ−1µ, Θ = Σ−1, we obtain an “Ising” form

Pγ,Θ (x) = exp


∑
s=1

γsxs︸ ︷︷ ︸
diagonal

− 1
2

p∑
s,t=1

θstxsxt︸ ︷︷ ︸
off-diagonal

− A (Θ)


where A (Θ) = −1

2 log det
[
Θ
2π

]
.
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Sparsity of the Precision Matrix Θ

I The entire graph represents the joint distribution.
I Dependence structure is represented by edges, e.g.

X1 ⊥ X4 | X2,X3,X5,

also known as conditional independence.
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Conditional Dependence Structure

Given p-dimensional X ∼ N (µ,Σ). Consider Y = Xp and
Z =

(
X1, . . . ,Xp−1

)
. Thus

µ =

(
µZ
µY

)
, Σ =

(
ΣZZ σZY
σT

ZY σYY

)

and the conditional distribution

Y | Z = z ∼ N

µY + (z − µZ )T Σ−1
ZZσZY︸ ︷︷ ︸

regression coef.

, σYY − σT
ZYΣ

−1
ZZσZY

 .

Write βY |Z = Σ−1
ZZσZY . If βY |Zj

= 0, then Y and Zj are
conditionally independent given the rest.
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Symmetry of Grpahical Models

One can do this for arbitrary Y and thus form a matrix β such
that each entry captures the conditional dependence of variable
Xi and Xj .

Symmetry
Consider Θ = Σ−1. Then,

Θ =

(
ΘZZ θZY
θT

ZY θYY

)

where in particular,

θZY = −θYYΣ
−1
ZZσZY = −θYYβY |Z

which means Θ symmetrically and completely determines
conditional dependence structure. Regression analysis doesn’t
honor this symmetry (normal equation solutions).
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The Graph Selection Problem

Problem Description
Given some data sampled from a graphical model whose
underlying structure is unknown, how do we use this data to
select the correct graphical representation?

Mathematical Formulation of covariance selection
For a collection {x1, . . . , xN} sampled from random variables
X ∈ Rp where p � N, can we estimate Θ which, in turn, gives
us the graphical structure of X?

Two Approaches

1. Conditional Inference.
2. Penalized Likelihood.
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Conditional Inference

Consider Gaussian variables X =
(
X1, . . . ,Xp

)
embedded in

G = (V ,E).

For s ∈ V , define its complement and
neighborhood

X\{s} =
{

Xt , t ∈ V\ {s}
}
∈ Rp−1

N (s) =
{

t ∈ V | (s, t) ∈ E
}
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Conditional Inference

Distributional Equivalence(
Xs | X\{s}

)
d
=
(

Xs | XN (s)

)
If one wants to predict Xs given the rest, you only need to look
“around” Xs, i.e. the best predictor is a function of XN (s).

Xs = X T
\{s}βs + W\{s}.

To estimate Θ with Θ̂ is to approximate the true edge set E with
an estimate Ê .



Parallel Graphical Lasso

Key steps

1. For each vertex s = 1,2, . . . ,p, do PARALLEL!
1.1 Some type of regression, say, lasso,

β̂s ∈ arg min
βs∈Rp−1

 1
2N

N∑
i=1

(
xi,s − xT

i,V\{s}β
s
)2

+ λ ‖βs‖1


1.2 Compute the estimate N̂ (s) = supp

(
β̂s

)
, i.e. nodes where

β̂s is nonzero.

2. Combine the estimates N̂ (s) for every s ∈ V .



Theoretical Guarantee

For graphical lasso to ensure Ĝ = G with high probability,

∥∥∥Θ̂−Θ∗
∥∥∥

2
.

√
d2 log p

N

where d is maximum degree of any node. We see that if
N = Ω

(
d2 log N

)
, we have recovery of the covariance structure

and thus a graphical model. The proof relies on concentration.



Take-aways

Advantanges

I Parallelizable
I Fast without the use of extensive packages

Disadvantanges

I No confidence interval of parameter estimation
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