## Graphical Model Selection

Binan Gu

Department of Mathematical Sciences, New Jersey Institute of Technology
New Jersey Institute of Technology Fall 2020 Machine Learning Talk III


## Motivation: Data Representation

Ising Model

## Motivation: Data Representation

Ising Model
Given undirected $G=(V, E)$ and Bernoulli variables $X=\left(X_{1}, \ldots, X_{p}\right) \in\{-1,+1\}^{p}$ on $V$,

## Motivation: Data Representation

Ising Model
Given undirected $G=(V, E)$ and Bernoulli variables
$X=\left(X_{1}, \ldots, X_{p}\right) \in\{-1,+1\}^{p}$ on $V$, the Ising model is the family of distributions

$$
\mathbb{P}_{\theta}\left(x_{1}, \ldots, x_{p}\right)=\exp \left\{\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}-A(\theta)\right\}
$$

where $\theta$ is connection strength and $A(\theta)$ a normalization constant.

## Motivation: Data Representation

Ising Model
Given undirected $G=(V, E)$ and Bernoulli variables
$X=\left(X_{1}, \ldots, X_{p}\right) \in\{-1,+1\}^{p}$ on $V$, the Ising model is the family of distributions

$$
\mathbb{P}_{\theta}\left(x_{1}, \ldots, x_{p}\right)=\exp \left\{\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}-A(\theta)\right\}
$$

where $\theta$ is connection strength and $A(\theta)$ a normalization constant. In practice, $\boldsymbol{A}(\theta)$ becomes computationally taxing when $p$ is big.

## Motivation: Data Representation

Reformulation of Multivariate Gaussian Variables

## Motivation: Data Representation

Reformulation of Multivariate Gaussian Variables
Let $X$ be a variable with distribution

$$
\mathbb{P}_{\mu, \boldsymbol{\Sigma}}(x)=\frac{1}{(2 \pi)^{\frac{5}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(x-\mu)} .
$$

## Motivation: Data Representation

Reformulation of Multivariate Gaussian Variables
Let $X$ be a variable with distribution

$$
\mathbb{P}_{\mu, \boldsymbol{\Sigma}}(x)=\frac{1}{(2 \pi)^{\frac{s}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(x-\mu)} .
$$

With $\gamma=-\boldsymbol{\Sigma}^{-1} \mu, \boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$, we obtain an "Ising" form

## Motivation: Data Representation

Reformulation of Multivariate Gaussian Variables
Let $X$ be a variable with distribution

$$
\mathbb{P}_{\mu, \boldsymbol{\Sigma}}(x)=\frac{1}{(2 \pi)^{\frac{s}{5}} \operatorname{det}(\boldsymbol{\Sigma})^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(x-\mu)} .
$$

With $\gamma=-\boldsymbol{\Sigma}^{-1} \mu, \boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$, we obtain an "Ising" form

$$
\mathbb{P}_{\gamma, \boldsymbol{\Theta}}(x)=\exp \{\underbrace{\sum_{s=1} \gamma_{s} x_{s}}_{\text {diagonal }}
$$

## Motivation: Data Representation

Reformulation of Multivariate Gaussian Variables
Let $X$ be a variable with distribution

$$
\mathbb{P}_{\mu, \boldsymbol{\Sigma}}(x)=\frac{1}{(2 \pi)^{\frac{s}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(x-\mu)} .
$$

With $\gamma=-\boldsymbol{\Sigma}^{-1} \mu, \boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$, we obtain an "Ising" form

$$
\mathbb{P}_{\gamma, \boldsymbol{\Theta}}(x)=\exp \{\underbrace{\sum_{s=1} \gamma_{s} x_{s}}_{\text {diagonal }}-\frac{1}{\frac{1}{2} \underbrace{p}_{\text {off-diagonal }} \theta_{s t} x_{s} x_{t}}-
$$

## Motivation: Data Representation

Reformulation of Multivariate Gaussian Variables
Let $X$ be a variable with distribution

$$
\mathbb{P}_{\mu, \boldsymbol{\Sigma}}(x)=\frac{1}{(2 \pi)^{\frac{5}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(x-\mu)} .
$$

With $\gamma=-\boldsymbol{\Sigma}^{-1} \mu, \boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$, we obtain an "Ising" form

$$
\mathbb{P}_{\gamma, \boldsymbol{\Theta}}(x)=\exp \{\underbrace{\sum_{s=1} \gamma_{s} x_{s}}_{\text {diagonal }}-\underbrace{\frac{1}{2} \sum_{s, t=1}^{p} \theta_{s t} x_{s} x_{t}}_{\text {off-diagonal }}-\boldsymbol{A}(\boldsymbol{\Theta})\}
$$

where $A(\boldsymbol{\Theta})=-\frac{1}{2} \log \operatorname{det}\left[\frac{\Theta}{2 \pi}\right]$.

## Sparsity of the Precision Matrix ©



Figure 9.3 (a) An undirected graph $G$ on five vertices. (b) Associated sparsity pattern of the precision matrix $\Theta$. White squares correspond to zero entries.

## Sparsity of the Precision Matrix ©



Figure 9.3 (a) An undirected graph $G$ on five vertices. (b) Associated sparsity pattern of the precision matrix $\Theta$. White squares correspond to zero entries.

- The entire graph represents the joint distribution.


## Sparsity of the Precision Matrix ©


(a)

(b)

Figure 9.3 (a) An undirected graph $G$ on five vertices. (b) Associated sparsity pattern of the precision matrix $\Theta$. White squares correspond to zero entries.

- The entire graph represents the joint distribution.
- Dependence structure is represented by edges, e.g.

$$
X_{1} \perp X_{4} \mid X_{2}, X_{3}, X_{5},
$$

also known as conditional independence.

## Conditional Dependence Structure

Given $p$-dimensional $X \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})$. Consider $Y=X_{p}$ and $Z=\left(X_{1}, \ldots, X_{p-1}\right)$. Thus

$$
\mu=\binom{\mu_{Z}}{\mu_{Y}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{Z Z} & \sigma_{Z Y} \\
\sigma_{Z Y}^{T} & \sigma_{Y Y}
\end{array}\right)
$$

## Conditional Dependence Structure

Given $p$-dimensional $X \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})$. Consider $Y=X_{p}$ and $Z=\left(X_{1}, \ldots, X_{p-1}\right)$. Thus

$$
\mu=\binom{\mu_{Z}}{\mu_{Y}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{Z Z} & \sigma_{Z Y} \\
\sigma_{Z Y}^{T} & \sigma_{Y Y}
\end{array}\right)
$$

and the conditional distribution
$Y \mid Z=z \sim \mathcal{N}(\mu_{Y}+\left(z-\mu_{Z}\right)^{T} \underbrace{\boldsymbol{\Sigma}_{Z Z Z_{Z Y}}^{-1} \sigma_{Z Y}}_{\text {regression coef. }}, \sigma_{Y Y}-\sigma_{Z Y}^{T} \boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y})$.

## Conditional Dependence Structure

Given $p$-dimensional $X \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})$. Consider $Y=X_{p}$ and $Z=\left(X_{1}, \ldots, X_{p-1}\right)$. Thus

$$
\mu=\binom{\mu_{Z}}{\mu_{Y}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{Z Z} & \sigma_{Z Y} \\
\sigma_{Z Y}^{T} & \sigma_{Y Y}
\end{array}\right)
$$

and the conditional distribution
$Y \mid Z=Z \sim \mathcal{N}(\mu_{Y}+\left(z-\mu_{Z}\right)^{T} \underbrace{\boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y}}_{\text {regression coee. }}, \sigma_{Y Y}-\sigma_{Z Y}^{T} \boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y})$.
Write $\beta_{Y \mid Z}=\boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y}$.

## Conditional Dependence Structure

Given $p$-dimensional $X \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})$. Consider $Y=X_{p}$ and $Z=\left(X_{1}, \ldots, X_{p-1}\right)$. Thus

$$
\mu=\binom{\mu_{Z}}{\mu_{Y}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{Z Z} & \sigma_{Z Y} \\
\sigma_{Z Y}^{T} & \sigma_{Y Y}
\end{array}\right)
$$

and the conditional distribution
$Y \mid Z=z \sim \mathcal{N}(\mu_{Y}+\left(z-\mu_{Z}\right)^{T} \underbrace{\boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y}}_{\text {regression coef. }}, \sigma_{Y Y}-\sigma_{Z Y}^{T} \boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y})$.
Write $\beta_{Y \mid Z}=\boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y}$. If $\beta_{Y \mid Z_{j}}=0$, then $Y$ and $Z_{j}$ are conditionally independent given the rest.

## Symmetry of Grpahical Models

One can do this for arbitrary $Y$ and thus form a matrix $\beta$ such that each entry captures the conditional dependence of variable $X_{i}$ and $X_{j}$.

## Symmetry of Grpahical Models

One can do this for arbitrary $Y$ and thus form a matrix $\beta$ such that each entry captures the conditional dependence of variable $X_{i}$ and $X_{j}$.
Symmetry
Consider $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$. Then,

$$
\boldsymbol{\Theta}=\left(\begin{array}{cc}
\boldsymbol{\Theta}_{Z Z} & \theta_{Z Y} \\
\theta_{Z Y}^{T} & \theta_{Y Y}
\end{array}\right)
$$

where in particular,

$$
\theta_{Z Y}=-\theta_{Y Y} \boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y}=-\theta_{Y Y} \beta_{Y \mid Z}
$$

## Symmetry of Grpahical Models

One can do this for arbitrary $Y$ and thus form a matrix $\beta$ such that each entry captures the conditional dependence of variable $X_{i}$ and $X_{j}$.
Symmetry
Consider $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$. Then,

$$
\boldsymbol{\Theta}=\left(\begin{array}{cc}
\boldsymbol{\Theta}_{Z Z} & \theta_{Z Y} \\
\theta_{Z Y}^{T} & \theta_{Y Y}
\end{array}\right)
$$

where in particular,

$$
\theta_{Z Y}=-\theta_{Y Y} \boldsymbol{\Sigma}_{Z Z}^{-1} \sigma_{Z Y}=-\theta_{Y Y} \beta_{Y \mid Z}
$$

which means $\Theta$ symmetrically and completely determines conditional dependence structure. Regression analysis doesn't honor this symmetry (normal equation solutions).

## The Graph Selection Problem

## Problem Description

Given some data sampled from a graphical model whose underlying structure is unknown, how do we use this data to select the correct graphical representation?

## The Graph Selection Problem

## Problem Description

Given some data sampled from a graphical model whose underlying structure is unknown, how do we use this data to select the correct graphical representation?

Mathematical Formulation of covariance selection
For a collection $\left\{x_{1}, \ldots, x_{N}\right\}$ sampled from random variables
$X \in \mathbb{R}^{p}$ where $p \gg N$, can we estimate $\Theta$ which, in turn, gives us the graphical structure of $X$ ?

## The Graph Selection Problem

## Problem Description

Given some data sampled from a graphical model whose underlying structure is unknown, how do we use this data to select the correct graphical representation?

Mathematical Formulation of covariance selection
For a collection $\left\{x_{1}, \ldots, x_{N}\right\}$ sampled from random variables
$X \in \mathbb{R}^{p}$ where $p \gg N$, can we estimate $\Theta$ which, in turn, gives us the graphical structure of $X$ ?

Two Approaches

## The Graph Selection Problem

## Problem Description

Given some data sampled from a graphical model whose underlying structure is unknown, how do we use this data to select the correct graphical representation?

Mathematical Formulation of covariance selection
For a collection $\left\{x_{1}, \ldots, x_{N}\right\}$ sampled from random variables
$X \in \mathbb{R}^{p}$ where $p \gg N$, can we estimate $\Theta$ which, in turn, gives us the graphical structure of $X$ ?

Two Approaches

1. Conditional Inference.

## The Graph Selection Problem

## Problem Description

Given some data sampled from a graphical model whose underlying structure is unknown, how do we use this data to select the correct graphical representation?

Mathematical Formulation of covariance selection
For a collection $\left\{x_{1}, \ldots, x_{N}\right\}$ sampled from random variables
$X \in \mathbb{R}^{p}$ where $p \gg N$, can we estimate $\Theta$ which, in turn, gives us the graphical structure of $X$ ?

Two Approaches

1. Conditional Inference.
2. Penalized Likelihood.

## The Graph Selection Problem

## Problem Description

Given some data sampled from a graphical model whose underlying structure is unknown, how do we use this data to select the correct graphical representation?

Mathematical Formulation of covariance selection For a collection $\left\{x_{1}, \ldots, x_{N}\right\}$ sampled from random variables $X \in \mathbb{R}^{p}$ where $p \gg N$, can we estimate $\Theta$ which, in turn, gives us the graphical structure of $X$ ?

Two Approaches

1. Conditional Inference.
2. Penalized Likelihood.

## Conditional Inference

Consider Gaussian variables $X=\left(X_{1}, \ldots, X_{p}\right)$ embedded in $G=(V, E)$.


Figure 9.6 The dark blue vertices form the neighborhood set $\mathcal{N}(s)$ of vertex $s$ (drawn in red); the set $\mathcal{N}^{+}(s)$ is given by the union $\mathcal{N}(s) \cup\{s\}$. Note that $\mathcal{N}(s)$ is a cut set in the graph that separates $\{s\}$ from $V \backslash \mathcal{N}^{+}(s)$. Consequently, the variable $X_{s}$ is conditionally independent of $X_{V \backslash \mathcal{N}+(s)}$ given the variables $X_{\mathcal{N ( s )}}$ in the neighborhood set. This conditional independence implies that the optimal predictor of $X_{s}$ based on all other variables in the graph depends only on $X_{N(s)}$.

## Conditional Inference

Consider Gaussian variables $X=\left(X_{1}, \ldots, X_{p}\right)$ embedded in $G=(V, E)$. For $s \in V$, define its complement and neighborhood

$$
\begin{aligned}
X_{\backslash\{s\}} & =\left\{X_{t}, t \in V \backslash\{s\}\right\} \in \mathbb{R}^{p-1} \\
\mathcal{N}(s) & =\{t \in V \mid(s, t) \in E\}
\end{aligned}
$$



Figure 9.6 The dark blue vertices form the neighborhood set $\mathcal{N}(s)$ of vertex s (drawn in red); the set $\mathcal{N}^{+}(s)$ is given by the union $\mathcal{N}(s) \cup\{s\}$. Note that $\mathcal{N}(s)$ is a cut set in the graph that separates $\{s\}$ from $V \backslash \mathcal{N}^{+}(s)$. Consequently, the variable $X_{s}$ is conditionally independent of $X_{V \backslash \mathcal{N}+(s)}$ given the variables $X_{\mathcal{N ( s )}}$ in the neighborhood set. This conditional independence implies that the optimal predictor of $X_{s}$ based on all other variables in the graph depends only on $X_{N(s)}$.

## Conditional Inference

## Distributional Equivalence

$$
\left(X_{s} \mid X_{\backslash\{s\}}\right) \stackrel{d}{=}\left(X_{s} \mid X_{\mathcal{N}(s)}\right)
$$

If one wants to predict $X_{s}$ given the rest, you only need to look "around" $X_{s}$, i.e. the best predictor is a function of $X_{\mathcal{N}(s)}$.

$$
X_{s}=X_{\backslash\{s\}}^{\top} \beta_{s}+W_{\backslash\{s\}} .
$$

To estimate $\boldsymbol{\Theta}$ with $\hat{\boldsymbol{O}}$ is to approximate the true edge set $E$ with an estimate $\hat{E}$.

## Parallel Graphical Lasso

## Key steps

1. For each vertex $s=1,2, \ldots, p$, do PARALLEL!
1.1 Some type of regression, say, lasso,

$$
\hat{\beta}^{s} \in \underset{\beta_{s} \in \mathbb{R}^{p-1}}{\arg \min }\left\{\frac{1}{2 N} \sum_{i=1}^{N}\left(x_{i, s}-x_{i, V \backslash\{s\}}^{T} \beta^{s}\right)^{2}+\lambda\left\|\beta_{s}\right\|_{1}\right\}
$$

1.2 Compute the estimate $\hat{\mathcal{N}}(s)=\operatorname{supp}\left(\hat{\beta}_{s}\right)$, i.e. nodes where $\hat{\beta}^{s}$ is nonzero.
2. Combine the estimates $\hat{\mathcal{N}}(s)$ for every $s \in V$.

## Theoretical Guarantee

For graphical lasso to ensure $\hat{G}=G$ with high probability,

$$
\left\|\hat{\boldsymbol{\Theta}}-\boldsymbol{\Theta}^{*}\right\|_{2} \lesssim \sqrt{\frac{d^{2} \log p}{N}}
$$

where $d$ is maximum degree of any node. We see that if $N=\Omega\left(d^{2} \log N\right)$, we have recovery of the covariance structure and thus a graphical model. The proof relies on concentration.

## Take-aways

Advantanges

- Parallelizable
- Fast without the use of extensive packages

Disadvantanges

- No confidence interval of parameter estimation


## References

通
Hastie, Trevor and Tibshirani, Robert and Wainwright, Martin. Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman \& Hall/CRC. 2015.

